

Progress beyond

Microbial Biopesticides

Adjuvants & Co-formulants toolbox

Agenda

- 1. Biocontrol introduction
 - What is Biocontrol?
 - Market Overview
- 2. Biocontrol Formulation Challenges
 - Overview
 - The case of Bacillus spores
 - The case of conidial species
- 3. Solvay Capabilities for Biocontrol Formulation design
 - Overview
 - R&I global organisation
 - Zoom: Biotechnology and Microbiology facilities in Brazil

4. Solvay's Approach and Solutions

- Approach
- Solvay's Adjuvant and Co-formulants toolbox
- Case Studies
 - Guar as retention/ rainfastness additive for biopesticides
 - Resolving microbial dispersion challenges with Solvay solutions
 - Adressing Needs for Seed treatments with biologicals
- 5. Q&A

page 2

What is Biocontrol?

Biocontrol comprises **using living organisms or natural substances** to prevent or reduce damage caused by harmful organisms (animal pests, weeds and pathogens):

4 categories of Biocontrol products / Biopesticides:

- Macro-organisms (eg Coccinellidae, trichogramma)
- Micro-organisms (eg Bacillus Thuringensis, Beauveria Bassiana)
- Semiochemicals (eg Pheromone)
- Natural substances of mineral, plant or animal origin (eg S, Cu, Plant Extracts)

One of the most promising tools for sustainable agriculture, complementing the use and reducing the risk of resistance to synthetic agrochemical actives, thus strengthening integrated pest management (IPM) adoption

Biocontrol – Market Overview

Growth Drivers

- Ag transition from synthetic pesticide to biologicals with Integrated Pest
- Growing demand from end consumer for organic & residue-free food
 - EU Farm to Fork strategy 2030 targets: Making 25% of EU agriculture organic; Reduce by 50% the use of Pesticides;
 - Brazil new National Bio-input Program

Formulation is key for biological efficacy of microbial pesticides

- Microorganism species (bacillus spores vs conidial) have different sensitivity to chemicals, temperature, UV, humidity.
- Microorganism strains and fermentation process also impact performance and formulability

 There is no universal solutions for formulating microorganisms. Formulation toolbox needs to be adapted.

Key formulation success criteria:

- Optimal Shelf-life
- Homogeneous dispersion upon dilution, ease of handling
- Retention & protection on target surface
 - Rainfastness
 - Protection against **environmental** factors (UV, temperature/drought resistance)
- Enhanced microbial bioactivity after application

Formulation & Application challenges with microorganisms

- SC, SE, OD, EC, SL, EW, WP, WDG agro formulations, process, characterizations
- Database of more than 2000 agro formulations
- High throughput formulation capabilities & modelling tools
- State of the art capabilities: Droplet size distributions, contact angle, surface tension, microscopy, granulometry, Zeta potential, foliar retention, rainfastness

Solvay Capabilities for Biocontrol formulations design

Network

(structural, separation, elementary analysis, powder morphology)

Phys-chem expertise

- Rheology
- Colloidal science
- Surface modification

Technology platforms

- Polymers incl. from natural source
- Mild Surfactants
- Green Solvents

Microbiology Advanced labs France, Brazil

Solvay's approach

FOCUS ON 4 MAIN MICROORGANISMS

to understand key formulations & application challenges, and therefore the core functionalities required for desired co-formulants:

Bacillus thuringiensisBeauvaria bassiana

BIOINSECTICIDES

- Bacillus subtilis /amyloliquefaciens
- Trichoderma harzianum

BIOFUNGICIDES

CO-FORMULANTS SCREENING based on:

- Functionality desired and targeted formulation type
- Regulatory criteria (low tox/ecotox profile, REACH & EPA, NOP for organic farming compliance etc.)
- Biological viability of selected strains from these 4 main microorganisms (zone inhibition tests)

SPECIFIC PRODUCT DEVELOPMENT

Dispersibility & desagglomeration aid designed for dense and hydrophobic microbial systems 3 Solutions for on seed applications of biologicals

Biological viability screening

Rapid, qualitative method to assess if a co-formulant has a negative impact on microorganism viability in agar plates

important test to anticipate potential viability issues, once microorganisms are activated / germinate upon formulation dilution

Solvay's range of inerts for biocontrol formulations

					Compatibility, Microbial Viability (Zone Inhibition Test)			
Function (Formulation type)	Product Name	NOP / OMRI Eligibility*	GHS Classification	EPA	Bacillus Thuringiensis	Bacillus Subtilis	Trichoderma Harzianum	Beauveria Bassiana
	Rhodasurf [®] 860/P	No	No if < 1%	180.910 & 180.920	(1%)	(1%)		(1%)
	Rhodasurf® CET/5	Yes	EU : No if < 2.5% UN : No if < 1%	180.910 & 180.920			(1%)	
	Soprophor [®] BSU	Yes	No if < 25%	180.910 & 180.920				
	Soprophor® 4D/384	Yes	No if < 25%	180.920				
	Soprophor® FL/K	Yes	No classification	180.920				
	Soprophor® TS/29	No	No if < 25%	180.910 & 180.920				
Wetting	Soprophor® 796/P	No	No classification	180.960				
Dispersing Agents (WP/WDG/SC/FS)	Antarox [®] 25-R-2	Yes	No classification	180.960				
	Antarox [®] L-62	Yes	No classification	180.960				
	Antarox [®] PL 104	Yes	No classification	180.940 & 180.960				
	Antarox [®] PLG-254	Yes	No classification	180.960				
	Antarox [®] B 600	No	No if <= 4.2%	180.960				
	Geropon [®] DA 1349	Yes	No classification	180.960				
	Geropon® T 36	Yes	No if < 18%	180.910 & 180.920				
	Supragil® RM/210-EI	Yes	No classification	180.910 & 180.920				
	Geronol [®] CF82 CC	Yes	No classification	180.920				

*i.e included in EPA NOP compliance List 4A/4B, therefore OMRI eligible

	No inhibition with 1% or 5% adjuvant
(1%)	Some inhibition with 5% adjuvant, no inhibition with 1% adjuvant
	Significant inhibition observed at 1% and 5% (radius inhibition zone [2 – 11 mm])
nt	Not tested

Soprophor[®] grades (TSP), Antarox[®] EO/PO, Geropon[®] DA1349 & T36 are versatile co-formulants with good

biological compatibility with tested microorganisms strains. I Suitable candidates for WP/WDG/SC/FS design

Microorganisms viability with co-formulants

					Compatibility, Microbial Viability (Zone Inhibition Test)			
Function (Formulation type)	Product Name	NOP / OMRI Eligibility*	GHS Classification	EPA	Bacillus Thuringiensis	Bacillus Subtilis	Trichoderma Harzianum	Beauveria Bassiana
	Alkamuls® T20	Yes	No classification	180.910 & 180.920				
Emulsifiers	Alkamuls® T/85-V	Yes	No if < 25%	180.910 & 180.920	nt	nt	(1%)	
(OD, EC)	Alkamuls® OL 40	Yes	No classification	180.910 & 180.920				
	Alkamuls® RC	Yes	No classification	180.960				
	Alkamuls® VO 2003	No	No classification	180.960	nt	nt		(1%)
Thickeners (SC/FS)	Rhodopol [®] 23	Yes	No classification	180.950				

*i.e included in EPA NOP compliance List 4A/4B, therefore OMRI eligible

No inhibition with 1% or 5% adjuvant
Some inhibition with 5% adjuvant, no inhibition with
1% adjuvant
Significant inhibition observed at 1% and 5%
(radius inhibition zone [2 – 11 mm])
Not tested

For OD Design, e.g. with *Beauveria Bassiana* conoidal spores, depending on the nature of oil, **Alkamuls® T/85V, OL40**, **OR-36, VO2003 or T/20** are interesting candidates, with good biological compatibility with tested strains.

Geronol® Odessa The robust ready-to use solution for Oil Dispersion

GERONOL ODESSA SERIES

A ready-to-use, efficient Oil Dispersion basis, suitable for some microorganisms formulation (eg *Beauveria Bassiana*)

- Geronol Odessa 01 for Vegetable Oil based OD
- Geronol[®] Odessa 05 for MSO methylated seed oil based OD

FORMULATION EXAMPLE

Composition	OD#1 (Wt%)	
Beauveria Bassiana	20.0	
Geronol [®] Odessa 01	45.0	
Soybean Oil	Up to 100	
Characteristics		
Appearance	Dark green viscous liquid	
Density	0.98	
pH (5%)	6.0	
Brookfield Viscosity (20°C, 20RPM, mPa.s)	1250	
Storage at 0°C for 7 days	stable	
Dilution stability (CIPAC D, 30°C, 2h)	ОК	

SOLVAY

Enhancing microbial growth with natural polymer technology

 Significant increase of microbial growth observed in presence of 1%(w/v) GUAR-RA for all microorganisms tested

Microorganisms were separately inoculated in the experimental broth containing 1%(w/v) of GUAR-RA and the control media, without it. All flasks were incubated at 30°C, 150 rpm, for 96h, with sampling every 24h for colony counting or dry weight measurements. The growth rate was calculated and compared with control experiments.

Rainfastness additive for biopesticides

RAINFASTNESS - High throughput screening methodology

- Calibrated droplets deposit on the surface of the leaves, drying time 1 hour at RT, followed by washing cycles using a specific robotic arm.
- Then absorbance measurements of the collected eluents from captured images with a digital camera. A high transmittance value corresponds to a good rainfastness.

- Outstanding rainfastness even after 3 rain cycles
- Outperfmorms standard synthetic commercial benchmark

* Cumulative eluent transmittance, up to 3 rinsing cycles 4ml water

[1] For Bt Solo & [Bt + GUAR-RA3], only 1st wash performed, due to limited rainfast after 1 wash [2] For [Bt + Benchmark] & [Bt + GUAR-RA4], only 1st & 2nd washes performed due to limited rainfast after 2nd wash.

Rainfastness additive for biopesticides

- Inoculation of the lower (abaxial) fac of vine leaf with a calibrated suspension of *B. cinerea* strain (**Botrytis**)
- Drying 1h
- Incubation 24h in climatic chamber (19°C 8h night/ 23°C 16h day)
 Blotransfer

Bacillus Amyloliquefaciens WDG efficacy against Botrytis on vine

- Under heavy rain, use of rainfastness technology is critical for performance
- Solvay natural product doubles biological efficacy under dry or normal rain conditions
- Solvay product consistently outperforms synthetic commercial benchmark

Resolving dispersion challenges with Solvay solution

DISPERSION CHALLENGES

High tendency to aggregation/agglomeration/sedimentation when diluting most commercial biopesticide products into water (dilution rate range 0.1%~2% m/v)

WHY?

- Larger particle sizes distribution of microorganisms / metabolites vs conventional pesticides
- Particles density
- Hydrophobicity of fermentation broth microorganisms, metabolites etc.

CONSEQUENCES

- Lack of homogeneity of dispersion, nozzles blocking risk
- Handling process issues for final user
- Potential lack of bioavailability of microorganisms & their metabolites once applied
- Potential negative impact on final bioefficacy

30 min

30 min

B. Subtilis SC before dilution (same brand different lots)

Resolving dispersion challenges with Solvay solution

Strong improvement of dispersion quality with Solvay WP1.

COMMERCIAL BACILLUS THURIGIENSIS WDG FORMULATION

 24hrs + 30min

 after redispersion

SOLVA

t WDG + 0.05% ne 0.5% Solvay WP1

Resolving dispersion challenges with Solvay solution

Strong improvement of *B. Subtilis* suspensibility with solvay WP1 (Built-in) and OD guar (Tank Mix) solutions

COMMERCIAL BACILLUS SUBTILIS SC FORMULATION

On-Seed application of biologicals

Microplastic-Free Binder Solutions

AgRHO BIOBINDER

- Compatible with microorganisms
- Can be used in Organic Farming EU for Seed Treatment according to EC834/2007
- Readily biodegradable (OECD 301F),
- Good dust reduction performance for some biological slurries
- ✓ No negative impact on germination

Biostimulants / Biologicals

Synergistic combination

AgRHO S-Boost Range

- Stronger root architecture development
- Improved nutrients & water uptake
- Symbiotic interaction with soil microorganisms
- Synergy with microbial biopesticides applied on seeds

In Enhanced crop yield, with mitigation of adverse drought conditions

Flowable Suspensions and Slurries

Solvay co-formulant portfolio compatible with microbials :

- Wetting agents
- Dispersant agents for high load flowables
- Rheological agents

FEATURE SOLUTIONS – SEED CARE

AgRHO Biobinder compatibility with microorganisms

Microorganisms

Adiuvant to

be tested

not toxic

AgRHO BioBinder

B. Japonicum

B. Amyloliquefaciens **B.** Thuriengiensis

Negative control

Peroxide

- AgRho Biobinder does not trigger any inhibition of microorganism growth for the three bacteria species tested.
- AgRho Biobinder can be safely co-applied with slurry based on microorganisms for biocontrol or inoculant purpose.

AgRHO Biobinder dust reduction performance

Dust Reduction Performance, in biological slurry*

* Seed treatment: biological inoculant based on a fungus species applied on corn seeds at a dose rate of 500 g/qt as a dry powder. The binder formulations are coapplied on seeds with an application rate of 585 g/qt. **ESTA standard test** (100gr seed, 30RPM, air flow 20L/min, rotation 120 sec)

Germination Impact

Germination tests to assess the innocuousness of AgRho® Biobinder:

Treatment	% normal plant
Control	89
AgRho Biobinder 175 mL/qt	88

Test was conducted in wet sand (9% humidity) during 7 days with 8 hours of light per day and alternative temperature 20/30°C.

For biological slurry based on microorganism dispersions, AgRho Biobinder offers higher dust reduction performances than the synthetic benchmark, and is safe for application on seeds, no sign of phytotoxicity observed

FEATURE SOLUTIONS – SEED CARE

AgRho® S-Boost Biostimulant Technology at a Glance

AgRHO S-Boost, Architect of stronger roots

S-Boost is a bio-based macromolecule, initially apply on the seed ٠

S-Boost enhances plant's interactions with soil microorganisms

- Boost seed germination V
- Enhance plant vigor V
- Maximize plant establishment

IMPROVE ABIOTIC STRESS RESISTANCE

- Stronger root architecture
- Optimized water & nutriments uptake
- Symbiotic interaction with soil micro-organisms

OPTIMIZE CROP YIELD

- Positive yield response on multiple crops
- Mitigation of adverse drought conditions

AgRho® S-Boost

Boost

FEATURE PRODUCTS #3

Synergy of S-Boost with Bradyrhizobium Japonicum on Soybean

S-Boost ELX is compatible with the principal species of microorganisms used in seed treatment such as **Bradyrhizobium Japonicum and Bacillus Subtilis**

A higher yield increase with S-Boost[™] ELX technology is observed in presence of rhizobium bacteria: + 3,3% (+ 1qt/ha)

FEATURE SOLUTIONS – SEED CARE

AgRho® S-Boost[™] impact on soil microbial content

Bacterial abundance measured with "Microbial Biomass Content" measured in several decreasing soil water content (from WC1 to WC4). Data collected in cinnamon soil collected from Linfen City, Shanxi Province .

S-Boost[™] technology increases Microbial Biomass Content in soil

Conclusion

- Solvay has mobilized its agro formulation know-how coupled with microbiology expertise, phys-chem & high throughput capabilities to develop solutions for formulators of microbial pesticides for foliar or seed applications:
 - Inert toolbox adapted to standard dry or liquid biocontrol formulation
 - Feature sustainable solutions designed specifically to answer the most demanding challenges of biocontrol formulations: retention/rainfastness, desagglomaration, and overall bioefficacy enhancement
- Future developments will be focused on microbial **shelf-life enhancement**, **UV stability** & improvement of microorganisms **compatibility with conventional actives** through innovative **encapsulation technologies**

We would be happy to collaborate on your projects, develop new partnerships and support your Biocontrol formulation developments !

Thank You!

Progress beyond

solvay.com

Zone Inhibition Tests

No

Methodology, microorganism compatibility with adjuvant

METHODOLOGY FOR BACTERIAL INCUBATION AND GROWTH MEASUREMENT

Evaluation of the influence of guar on bacteria growth (µ value)

METHODOLOGY FOR FUNGI INCUBATION AND GROWTH MEASUREMENT

Formulation needs for some Bacillus spores

Microorganism	Mode of Action	Products characteristics & form	Key Formulation & application needs
Bacillus Subtilis / Amyloliquefaciens MBI600, QST713, D747 etc. Biofungicide	 <i>B. Subtilis</i> + their lipopeptides metabolites (eg surfactins, iturins, agrastatins/plipastatins for QST 713) Lipopeptides synergize each other to inhibit germ tubes, mycelium and disrupt fungal pathogen cell membranes Lipopeptides prevent pathogen growth Colonization of <i>B. subtilis</i> spores on leaf surface & root systems, competition/site exclusion for pathogens, nutrient competition. Pathogen targets: Botrytis, Powdery Mildews, sour rot, rust, sclerotinia, white mold etc. 	Good resistance of Bacillus spores, to heat, UV, draught, chemical stress. Typically WP/WDG & SC/FS form SC /FS form SC /FS Form	 Better dispersibility / desagglomeration characteristics upon dilution Better bioavailability, solubilization efficacy of lipopeptides For foliar application, better adhesion/retention & rainfastness to avoid environmental loss of key metabolites and spores.
Bacillus thuringiensis (Bt ssp. Aizawaii & Bt ssp. Kurstaki) Bioinsecticide	During sporulation of <i>Bt</i> , crystal aggregates of proteins are produced. These crystals are taken up via ingestion and will interact with the midgut (specific interaction of crystal-insect depending on <i>Bt</i>) causing death of the insect. Targets: +30 species of insects, incl. tent caterpillar and various bagworms, looper, tobacco budworms and armyworms	 Typically WP/WDG & SC form Typically WP/WDG & SC form 	 Increased UV stability Better adhesion/retention & rainfastness (Bt & protein crystals aggregates) Increased stickiness (insect cuticles) Better dispersibility/desagglomeration characteristics upon dilution

Formulation needs for some conidial species

Microorganism	Mode of Action	Products characteristics & form	Key Formulation & application needs
Beauveria bassiana (PPRI 5339, ATCC74040) Bioinsecticide	 Fungal conidial spores contact pathogen, acting as microbiological insecticide. adheres to the insect cuticle (interaction spore wall/epicuticle lipids) germinates, and penetrates the cuticle (enzymes) Replicates in the insect body and destroys the internal structures of the host insect. 	No protective barrier so low resistance to temperature, chemicals, UV, low shelf-life Low stability in water (easy reactivation in water) Water-free med:	 Increased shelf-life Increased temperature & UV stability Better adhesion/retention & rainfastness Increased stickiness (acarids/insect cuticles) OD preferred vs WP (oil increases the adhesion of spores to insect cuticles, through hydrophobic interaction between spores & cuticle surface) Better dispersibility/desagglomeration characteristics upon dilution
Trichoderma (harzianum T-22, asperellum ICC012, atroviride I 1237 etc.) Biofungicide	 Biofungicides used against damping-off diseases. colonizes the soil and roots of the host plant competes with plant pathogenic fungi for space and nutrients. attacks the cell walls of pathogens with enzymes. promotes plant growth, increases the uptake and availability of nutrients 	High sensitivity to chemicals, low shelf-life (<6 months), low temperature & UV stability, low water activity required Typically WP/WDG , OD	 Increased shelf-life Increased temperature & UV stability Better adhesion/retention & rainfastness Improve germination under cold conditions Better dispersibility/desagglomeration characteristics upon dilution

Biotechnology and Microbiology Facilities in Brazil

- Located at Solvay's R&I Center in Paulínia (SP)
- Capabilities in Biotechnology, Environmental analysis and Microbiology
- Microbiology labs: biosafety level 2 Biosafety Certificate Genetic Modified Microorganisms (GMM - biosafety level 1)

Team of experts in:

- Biology
- Organic Chemistry
- Chemical Engineering
- Process Engineering
- Renewable Chemistry
- Environmental Engineering

MICROORGANISMS LIBRARY

Main competencies:

- Microbiology assays
- Enzymatic processes
- Fermentation
- Biomass Processing and Valorization
- Ecotoxicity evaluation

Partnerships with start-ups and Universities

T. harzianum

B. bassiana

A. brasiliensis

B. subtilis

B. amyloliquefaciens

E. coli

P. aeruginosa

And

page 31

Biotechnology and Microbiology Facilities in Brazil

- Production of microorganisms biomass
- Fermentation process to obtain valuable products

Sterile manipulation of aerobic and anaerobic strains
Stock of microorganisms at -80°C

- Fermentation products analysis
- Growth curve for microorganisms

HPLC and Spectrophotometer

- Enzymatic assays up to 2L
- Free and Immobilized enzymes

Large scale enzymatic reactions

- Culture media preparation
- Decontamination of materials

Sterilization room

Capabilities Agro formulation labs

Spray chamber with Sympatec laser for droplet size distribution assessment

Optical microscopy

Horiba Granulometer

